Positive Selection of a Starch Synthesis Gene and Phenotypic Differentiation of Starch Accumulation in Symbiotic and Free-Living Coral Symbiont Dinoflagellate Species.

共生和自由生活珊瑚共生甲藻物种中淀粉合成基因的正向选择和淀粉积累的表型分化

阅读:14
作者:Ishii Yuu, Kanamori Shunsuke, Deguchi Ryusaku, Kawata Masakado, Maruyama Shinichiro, Yoshida Takashi, Kamikawa Ryoma
Symbiosis is a basis for species diversification through interactions between organisms. In tropical and subtropical oceans, dinoflagellate symbionts belonging to the family Symbiodiniaceae, including the genus Symbiodinium, support the flourishment of cnidarian hosts, including corals, and thereby the ecology of oligotrophic oceans through their photosynthate carbon transfers. Although the genus Symbiodinium includes both free-living and symbiotic species, the detailed genetic background of their lifestyle differences remains unclear. In this study, we identified candidate genes involved in the evolutionary acquisition or maintenance of symbiosis in Symbiodinium spp. by detecting genes that have undergone positive selection during symbiotic and free-living lifestyle diversification. Using multiple Symbiodinium genomes to detect positive selection, 35 genes were identified, including a gene encoding soluble starch synthase SSY1 and genes related to metabolite secretion, which may be preferred for symbiotic lifestyles. In particular, our in silico analyses revealed that the SSY1 gene family has undergone extensive gene duplications in an ancestral dinoflagellate, and that the mutations detected as positive selection have occurred in the intrinsically disordered region of one of the homologs. Consistent with molecular evolution, the phenotypes of intracellular starch synthesis/accumulation were distinct between the symbiotic and free-living species of Symbiodinium when cultured under different pH and nitrogen conditions. These results provide molecular and phenotypic insights into symbiotic Symbiodinium-coral relationships.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。