Gangliosides are specialized glycosphingolipids most abundant in the central nervous system. Their complex amphiphilic structure is essential to the formation of membrane lipid rafts and for molecular recognition. Dysfunction of lipid rafts and ganglioside metabolism has been linked to cancer, metabolic disorders, and neurodegenerative disorders. Changes in ganglioside concentration and diversity during the progression of disease have made them potential biomarkers for early detection and shed light on disease mechanisms. Chemical derivatization facilitates whole ion analysis of gangliosides while improving ionization, providing rich fragmentation spectra, and enabling multiplexed analysis schemes such as stable isotope labeling. In this work, we report improvement to our previously reported isobaric labeling methodology for ganglioside analysis by increasing buffer concentration and removing solid-phase extraction desalting for a more complete and quantitative reaction. Identification and quantification of gangliosides are automated through MS-DIAL with an in-house ganglioside derivatives library. We have applied the updated methodology to relative quantification of gangliosides in six mouse brain regions (cerebellum, pons/medulla, midbrain, thalamus/hypothalamus, cortex, and basal ganglia) with 2 mg tissue per sample, and region-specific distributions of 88 ganglioside molecular species are described with ceramide isomers resolved. This method is promising for application to comparative analysis of gangliosides in biological samples.
Region-specific mouse brain ganglioside distribution revealed by an improved isobaric aminoxyTMT labeling strategy with automated data processing.
通过改进的同位素氨基氧基TMT标记策略和自动化数据处理,揭示了小鼠脑神经节苷脂的区域特异性分布
阅读:4
作者:Smith Ryan A, Zhang Qibin
| 期刊: | Analytical and Bioanalytical Chemistry | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Dec;415(29-30):7269-7279 |
| doi: | 10.1007/s00216-023-04995-y | 种属: | Mouse |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
