Array detection enables large localization range for simple and robust MINFLUX.

阵列检测能够实现简单而稳健的 MINFLUX 的大范围定位

阅读:8
作者:Slenders Eli, Patil Sanket, Held Marcus Oliver, Zunino Alessandro, Vicidomini Giuseppe
The MINFLUX concept significantly improves the localization properties of single-molecule localization microscopy (SMLM) by overcoming the limit imposed by the fluorophore's photon counts. Typical MINFLUX microscopes localize the target molecule by scanning a zero-intensity focus around the molecule in a circular trajectory, with smaller trajectory diameters yielding better localization uncertainties for a given number of photons. Since this approach requires the molecule to be within the scanned trajectory, MINFLUX typically relies on an iterative scheme with decreasing trajectory diameters. This iterative approach is prone to misplacements of the trajectory and increases the system's complexity. In this work, we introduce ISM-FLUX, a novel implementation of MINFLUX using image-scanning microscopy (ISM) with a single-photon avalanche diode array detector. ISM-FLUX provides a precise MINFLUX localization within the trajectory while maintaining a conventional photon-limited uncertainty outside it. The robustness of ISM-FLUX localization results in a larger localization range and greatly simplifies the architecture, which may facilitate broader adoption of MINFLUX.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。