Several well-characterized fungal proteins act as prions, proteins capable of multiple conformations, each with different activities, at least one of which is self-propagating. Through such self-propagating changes in function, yeast prions act as protein-based elements of phenotypic inheritance. We report a prion that makes cells resistant to the glucose-associated repression of alternative carbon sources, [GAR(+)] (for "resistant to glucose-associated repression," with capital letters indicating dominance and brackets indicating its non-Mendelian character). [GAR(+)] appears spontaneously at a high rate and is transmissible by non-Mendelian, cytoplasmic inheritance. Several lines of evidence suggest that the prion state involves a complex between a small fraction of the cellular complement of Pma1, the major plasma membrane proton pump, and Std1, a much lower-abundance protein that participates in glucose signaling. The Pma1 proteins from closely related Saccharomyces species are also associated with the appearance of [GAR(+)]. This allowed us to confirm the relationship between Pma1, Std1, and [GAR(+)] by establishing that these proteins can create a transmission barrier for prion propagation and induction in Saccharomyces cerevisiae. The fact that yeast cells employ a prion-based mechanism for heritably switching between distinct carbon source utilization strategies, and employ the plasma membrane proton pump to do so, expands the biological framework in which self-propagating protein-based elements of inheritance operate.
A heritable switch in carbon source utilization driven by an unusual yeast prion.
由一种不寻常的酵母朊病毒驱动的碳源利用的可遗传转变
阅读:4
作者:Brown Jessica C S, Lindquist Susan
| 期刊: | Genes & Development | 影响因子: | 7.700 |
| 时间: | 2009 | 起止号: | 2009 Oct 1; 23(19):2320-32 |
| doi: | 10.1101/gad.1839109 | 种属: | Yeast |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
