Transcription Factors ClrB and XlnR and Their Effect on the Transcription of Cellulase Genes in the Filamentous Fungus Penicillium verruculosum.

转录因子 ClrB 和 XlnR 及其对丝状真菌疣状青霉纤维素酶基因转录的影响

阅读:6
作者:Chulkin Andrey, Kislitsin Valeriy, Sinelnikov Igor, Sinitsyn Arkady, Zorov Ivan, Volkov Pavel, Rozhkova Aleksandra
The filamentous fungus Penicillium verruculosum (anamorph Talaromyces verruculosus) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus P. verruculosum is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins. Transcriptional regulation of cellulase genes may have a species-specific pattern and involves several transcription factors. In this study, we used a qPCR method and transcriptome analysis to investigate the effect of knockouts and constitutive expression of genes encoding homologues of the regulatory factors XlnR and ClrB from P. verruculosum on the transcription of cbh1, egl2, and bgl1 genes, encoding three key cellulases, cellobiohydrolase, endoglucanase, and β-glucosidase, in the presence of various inducers. We have shown that the transcription factor XlnR of the filamentous fungus P. verruculosum is strictly responsible for the transcription of the main cellulolytic genes (cbh1, egl2, and bgl1) in the presence of xylose and xylobiose, but not in the presence of cellobiose. ClrB/Clr-2, a homologue from P. verruculosum, does not represent the main transcription factor regulating transcription of cellulolytic genes in the presence of selected inducers, unlike in the cases of Aspergillus nidulans, Aspergillus niger, and Penicillium oxalicum; apparently, it has a different function in fungi from the genus Talaromyces. We have also shown that constitutive expression of the transcription factor XlnR resulted in 3.5- and 2-fold increases in the activity of xylanase and β-glucosidase in a B1-XlnR enzyme preparation, respectively. In a practical sense, the obtained result can be used for the production of enzyme preparations based on the P. verruculosum B1-XlnR strain used for the bioconversion of renewable cellulose-containing raw materials into technical sugars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。