Controlling gene expression in yeast by inducible site-specific recombination.

利用诱导位点特异性重组控制酵母中的基因表达

阅读:4
作者:Cheng T H, Chang C R, Joy P, Yablok S, Gartenberg M R
An intron module was developed for Saccharomyces cerevisiae that imparts conditional gene regulation. The kanMX marker, flanked by loxP sites for the Cre recombinase, was embedded within the ACT1 intron and the resulting module was targeted to specific genes by PCR-mediated gene disruption. Initially, recipient genes were inactivated because the loxP-kanMX-loxP cassette prevented formation of mature transcripts. However, expression was restored by Cre-mediated site-specific recombination, which excised the loxP-kanMX-loxP cassette to generate a functional intron that contained a single loxP site. Cre recombinase activity was controlled at the transcriptional level by a GAL1::CRE expression vector or at the enzymatic level by fusing the protein to the hormone-dependent regulatory domain of the estrogen receptor. Negative selection against leaky pre-excision events was achieved by growing cells in modified minimal media that contained geneticin (G418). Advantages of this gene regulation technique, which we term the conditional knock-out approach, are that (i) modified genes are completely inactivated prior to induction, (ii) modified genes are induced rapidly to expression levels that compare to their unmodified counterparts, and (iii) it is easy to use and generally applicable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。