A temperature-sensitive and less immunogenic Sendai virus for efficient gene editing.

一种对温度敏感且免疫原性较低的仙台病毒,可用于高效基因编辑

阅读:4
作者:Stevens Christian S, Carmichael Jillian C, Watkinson Ruth, Kowdle Shreyas, Reis Rebecca A, Hamane Kory, Jang Jason, Park Arnold, Pernet Olivier, Khamaikawin Wannisa, Hong Patrick, Thibault Patricia, Gowlikar Aditya, An Dong Sung, Lee Benhur
The therapeutic potential of gene editing technologies hinges on the development of safe and effective delivery methods. In this study, we developed a temperature-sensitive and less immunogenic Sendai virus (ts SeV) as a novel delivery vector for CRISPR-Cas9 and for efficient gene editing in sensitive human cell types with limited induction of an innate immune response. ts SeV demonstrates high transduction efficiency in human CD34(+) hematopoietic stem and progenitor cells (HSPCs) including transduction of the CD34(+)/CD38(-)/CD45RA(-)/CD90(+)(Thy1(+))/CD49f(high) stem cell enriched subpopulation. The frequency of CCR5 editing exceeded 90% and bi-allelic CCR5 editing exceeded 70% resulting in significant inhibition of HIV-1 infection in primary human CD14(+) monocytes. These results demonstrate the potential of the ts SeV platform as a safe, efficient, and flexible addition to the current gene-editing tool delivery methods, which may help further expand the possibilities in personalized medicine and the treatment of genetic disorders. IMPORTANCE: Gene editing has the potential to be a powerful tool for the treatment of human diseases including HIV, β-thalassemias, and sickle cell disease. Recent advances have begun to overcome one of the major limiting factors of this technology, namely delivery of the CRISPR-Cas9 gene editing machinery, by utilizing viral vectors. However, gene editing therapies have yet to be implemented due to inherent risks associated with the DNA viral vectors typically used for delivery. As an alternative strategy, we have developed an RNA-based Sendai virus CRISPR-Cas9 delivery vector that does not integrate into the genome, is temperature sensitive, and does not induce a significant host interferon response. This recombinant SeV successfully delivered CRISPR-Cas9 in primary human CD14+ monocytes ex vivo resulting in a high level of CCR5 editing and inhibition of HIV infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。