Toehold-VISTA: A machine learning approach to decipher programmable RNA sensor-target interactions.

Toehold-VISTA:一种利用机器学习方法解析可编程RNA传感器-靶标相互作用的方法

阅读:3
作者:Robson James M, Green Alexander A
RNA-based biosensors have emerged as essential tools in synthetic biology and diagnostics, enabling precise and programmable responses to diverse RNA inputs. However, the time to design, produce, and screen high-performance RNA sensors remains a critical challenge. The fundamental rules governing RNA-RNA interactions-specifically the structure-function relationships that determine sensor performance-remain poorly understood. Here, we present a method enabling versatile in-silico RNA-targeting analysis (VISTA), a machine learning-guided framework for the rapid design of RNA sensors. VISTA integrates biophysical modeling of both sensor and target RNAs with a partial least squares discriminant analysis (PLS-DA) machine learning framework. Using high-throughput experimental measurements with sequence-structure feature extraction to train predictive models, we capture the key determinants of RNA sensor performance. We find that by using toehold switches as a model RNA sensor, Toehold-VISTA successfully designs RNA sensors with improved function against SARS-CoV-2 RNA. These findings establish a broadly applicable, target-aware design strategy for accelerating RNA sensor engineering across biotechnology and diagnostic applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。