High efficiency reduction capability for the formation of Fab׳ antibody fragments from F(ab)(2) units.

高效还原能力,可将 F(ab)(2) 单元转化为 Fab׳ 抗体片段

阅读:3
作者:Crivianu-Gaita Victor, Romaschin Alexander, Thompson Michael
Antibodies have widespread applications in areas ranging from therapeutics to chromatography and protein microarrays. Certain applications require only the fragment antigen-binding (Fab) units of the protein. This study compares the cleavage efficacy of dithiothreitol (DTT), mercaptoethylamine (MEA), and dithiobutylamine (DTBA) - a relatively new reducing agent synthesized in 2012. Pseudo-first order kinetic analyses show DTBA to be ~213 times faster than DTT and ~71 times faster than MEA in the formation of Fab׳ antibody fragments from polyclonal rabbit antibodies. Monoclonal mouse antibodies were also used to show the feasibility of the reduction process on antibodies from a different species and with a different clonality. DTBA cleaved the monoclonal mouse F(ab)(2) units most efficiently, ~2 times faster than DTT ~10 times faster than MEA. Due to the extremely quick reactivity of all the reducing agents in the first five minutes of monoclonal antibody reductions as well as for the DTBA reductions of the polyclonal rabbit antibodies, the pseudo-first order kinetic analyses should be interpreted qualitatively for these results. Nucleophilic sulfides on Fab׳ fragments are preserved in the DTBA reduction process, demonstrated by their reactivity with Ellman׳s reagent. Degradation of the Fab׳ fragments was observed with the monoclonal mouse antibodies after reduction with DTBA or DTT. In conclusion, DTBA is the more efficient reducing agent compared to DTT and MEA, however, the reduction process should be optimized as degradation of the Fab׳ fragments is possible.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。