Ketogenesis is dispensable for the metabolic adaptations to caloric restriction.

生酮作用对于热量限制的代谢适应并非必需

阅读:4
作者:Yeh Chung-Yang, Borgelt Lexie, Vogt Brynn J, Clark Alyssa A, Wong Ted T, Grunow Isaac, Sonsalla Michelle M, Babygirija Reji, Liu Yang, Trautman Michaela E, Calubag Mariah F, Knopf Bailey A, Xiao Fan, Lamming Dudley W
Caloric restriction (CR) robustly extends the health and lifespan of diverse species. When fed once daily, CR-treated mice rapidly consume their food and endure a prolonged fast between meals. As fasting is associated with a rise in circulating ketones, we decided to investigate the role of ketogenesis in CR using mice with whole-body ablation of Hmgcs2, the rate-limiting enzyme producing the main ketone body β-hydroxybutyrate (βHB). Here, we report that Hmgcs2 is largely dispensable for many metabolic benefits of CR, including CR-driven changes in adiposity, glycemic control, liver autophagy, and energy balance. Although we observed sex-specific effects of Hmgcs2 on insulin sensitivity, fuel selection, and adipocyte gene expression, the overall physiological response to CR remains robust in mice lacking Hmgcs2. To gain insight into why deletion of Hmgcs2 does not disrupt CR, we measured fasting βHB levels as mice began a CR diet. Surprisingly, as CR-fed mice adapt to CR, they no longer engage high levels of ketogenesis during the daily fast. Our work suggests that the benefits of long-term CR in mice are not mediated by ketogenesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。