GADD45A suppression contributes to cardiac remodeling by promoting inflammation, fibrosis and hypertrophy.

GADD45A抑制通过促进炎症、纤维化和肥大,导致心脏重塑

阅读:17
作者:Rostami Adel, Palomer Xavier, Pizarro-Delgado Javier, Peña Lucía, Zamora Mònica, Montori-Grau Marta, Barroso Emma, Valenzuela-Alcaraz Brenda, Crispi Fàtima, Salvador Jesús M, García Raquel, Hurlé María A, Nistal Francisco, Vázquez-Carrera Manuel
The growth arrest and DNA damage inducible 45A (GADD45A) is a multifaceted protein associated with stress signaling and cellular injury. Aside its well-established tumor suppressor activity, recent studies point to additional roles for GADD45A, including the regulation of catabolic and anabolic pathways, or the prevention of inflammation, fibrosis, and oxidative stress in some tissues and organs. However, little is known about its function in cardiac disease. In this study, we aimed to evaluate the role of GADD45A in the heart by using mice with constitutive and systemic deletion of Gadd45a, and cardiac cells of human origin. Gadd45a suppression in knockout mice triggered cardiac fibrosis, inflammation, and apoptosis, and these changes correlated with an hyperactivation of the pro-inflammatory and pro-fibrotic transcription factors activator protein-1 (AP-1), nuclear factor-κB (NF-κB), and signal transducer and activator of transcription 3 (STAT3). Deletion of Gadd45a also resulted in substantial cardiac hypertrophy, which negatively impacted cardiac morphology and function in knockout mice. Consistent with this, GADD45A overexpression in human AC16 cardiomyocytes partially prevented the inflammatory and fibrotic responses induced by tumor necrosis factor-α (TNF-α). Overall, data presented in this study highlight an important role for GADD45A in the heart, since it may prevent inflammation, fibrosis, and apoptosis, and, by this means, preserve cardiac function and performance. Since fibrosis and inflammation are crucial in the progression of cardiac hypertrophy and subsequent heart failure, these results suggest that promoting the activity of this protein might be a promising therapeutic strategy to slow down the progression of these deleterious diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。