Across biological systems, cells undergo coordinated changes in gene expression, resulting in transcriptome dynamics that unfold within a low-dimensional manifold. While low-dimensional dynamics can be extracted using RNA velocity, these algorithms can be fragile and rely on heuristics lacking statistical control. Moreover, the estimated vector field is not dynamically consistent with the traversed gene expression manifold. To address these challenges, we introduce a Bayesian model of RNA velocity that couples velocity field and manifold estimation in a reformulated, unified framework, identifying the parameters of an explicit dynamical system. Focusing on the cell cycle, we implement VeloCycle to study gene regulation dynamics on one-dimensional periodic manifolds and validate its ability to infer cell cycle periods using live imaging. We also apply VeloCycle to reveal speed differences in regionally defined progenitors and Perturb-seq gene knockdowns. Overall, VeloCycle expands the single-cell RNA sequencing analysis toolkit with a modular and statistically consistent RNA velocity inference framework.
Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations.
利用流形约束 RNA 速度模型进行统计推断,揭示细胞周期速度的调节
阅读:6
作者:Lederer Alex R, Leonardi Maxine, Talamanca Lorenzo, Bobrovskiy Daniil M, Herrera Antonio, Droin Colas, Khven Irina, Carvalho Hugo J F, Valente Alessandro, Dominguez Mantes Albert, Mulet Arabà Pau, Pinello Luca, Naef Felix, La Manno Gioele
| 期刊: | Nature Methods | 影响因子: | 32.100 |
| 时间: | 2024 | 起止号: | 2024 Dec;21(12):2271-2286 |
| doi: | 10.1038/s41592-024-02471-8 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
