Scalable and lightweight deep learning for efficient high accuracy single-molecule localization microscopy.

可扩展且轻量级的深度学习,用于高效、高精度的单分子定位显微镜

阅读:4
作者:Fei Yue, Fu Shuang, Shi Wei, Fang Ke, Wang Ruixiong, Zhang Tianlun, Li Yiming
Deep learning has significantly improved the performance of single-molecule localization microscopy (SMLM), but many existing methods remain computationally intensive, limiting their applicability in high-throughput settings. To address these challenges, we present LiteLoc, a scalable analysis framework for high-throughput SMLM data analysis. LiteLoc employs a lightweight neural network architecture and integrates parallel processing across central processing unit (CPU) and graphics processing unit (GPU) resources to reduce latency and energy consumption without sacrificing localization accuracy. LiteLoc demonstrates substantial gains in processing speed and resource efficiency, making it an effective and scalable tool for routine SMLM workflows in biological research.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。