The ability to maintain invariant developmental phenotypes across disparate environments is termed canalization, but few examples of canalization mechanisms are described. In plants, robust flower production across environmental gradients contributes to reproductive success and agricultural yields. Flowers are produced by the shoot apical meristem (SAM) in an auxin-dependent manner following the switch from vegetative growth to the reproductive phase. While the timing of this phase change, called the floral transition, is sensitized to numerous environmental and endogenous signals, flower formation itself is remarkably invariant across environmental conditions. Previously we found that CLAVATA peptide signaling promotes auxin-dependent flower primordia formation in cool environments, but that high temperatures can restore primordia formation through unknown mechanisms. Here, we show that heat promotes floral primordia patterning and formation in SAMs not by increased auxin production, but through the production of the mobile flowering signal, florigen, in leaves. Florigen, which includes FLOWERING LOCUS T (FT) and its paralog TWIN SISTER OF FT (TSF) in Arabidopsis thaliana, is necessary and sufficient to buffer flower production against the loss of CLAVATA signaling and promotes heat-mediated primordia formation through specific SAM expressed transcriptional regulators. We find that sustained florigen production is necessary for continuous flower primordia production at warmer temperatures, contrasting florigen's switch-like control of floral transition. Lastly, we show that CLAVATA signaling and florigen synergize to canalize flower production across broad temperature ranges. This work sheds light on the mechanisms governing the canalization of plant development and provides potential targets for engineering crop plants with improved thermal tolerances.
Canalization of flower production across thermal environments requires Florigen and CLAVATA signaling.
花朵在不同温度环境下的生长发育需要 Florigen 和 CLAVATA 信号传导
阅读:4
作者:Smith Elizabeth S, John Amala, Willoughby Andrew C, Jones Daniel S, Galvão Vinicius C, Fankhauser Christian, Nimchuk Zachary L
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 25 |
| doi: | 10.1101/2025.03.23.644808 | 研究方向: | 信号转导 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
