During development, many signaling factors behave as morphogens, long-range signals eliciting different cellular responses according to their concentration. In ventral regions of the spinal cord, Sonic Hedgehog (Shh) is such a signal and controls the emergence, in precise spatial order, of distinct neuronal subtypes. The Gli family of transcription factors plays a central role in this process. Here we demonstrate that a gradient of Gli activity is sufficient to mediate, cell-autonomously, the full range of Shh responses in the neural tube. The incremental two- to threefold changes in Shh concentration, which determine alternative neuronal subtypes, are mimicked by similar small changes in the level of Gli activity, indicating that a gradient of Gli activity represents the intracellular correlate of graded Shh signaling. Moreover, our analysis suggests that cells integrate the level of signaling over time, consistent with the idea that signal duration, in addition to signal strength, is an important parameter controlling dorsal-ventral patterning. Together, these data indicate that Shh signaling is transduced, without amplification, into a gradient of Gli activity that orchestrates patterning of the ventral neural tube.
A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube.
神经管中 Gli 活性的梯度介导了 Sonic Hedgehog 信号的梯度传递
阅读:4
作者:Stamataki Despina, Ulloa Fausto, Tsoni Stavroula V, Mynett Anita, Briscoe James
| 期刊: | Genes & Development | 影响因子: | 7.700 |
| 时间: | 2005 | 起止号: | 2005 Mar 1; 19(5):626-41 |
| doi: | 10.1101/gad.325905 | 研究方向: | 神经科学 |
| 信号通路: | Hedgehog | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
