Dual roles of R-loops in the formation and processing of programmed DNA double-strand breaks during meiosis.

R环在减数分裂过程中程序性DNA双链断裂的形成和处理中发挥双重作用

阅读:2
作者:Liu Chao, Xu Wei, Wang Liying, Yang Zhuo, Li Kuan, Hu Jun, Chen Yinghong, Zhang Ruidan, Xiao Sai, Liu Wenwen, Wei Huafang, Chen Jia-Yu, Sun Qianwen, Li Wei
BACKGROUND: Meiotic recombination is initiated by Spo11-dependent programmed DNA double-strand breaks (DSBs) that are preferentially concentrated within genomic regions called hotspots; however, the factor(s) that specify the positions of meiotic DSB hotspots remain unclear. RESULTS: Here, we examined the frequency and distribution of R-loops, a type of functional chromatin structure comprising single-stranded DNA and a DNA:RNA hybrid, during budding yeast meiosis and found that the R-loops were changed dramatically throughout meiosis. We detected the formation of multiple de novo R-loops in the pachytene stage and found that these R-loops were associated with meiotic recombination during yeast meiosis. We show that transcription-replication head-on collisions could promote R-loop formation during meiotic DNA replication, and these R-loops are associated with Spo11. Furthermore, meiotic recombination hotspots can be eliminated by reversing the direction of transcription or replication, and reversing both of these directions can reconstitute the hotspots. CONCLUSIONS: Our study reveals that R-loops may play dual roles in meiotic recombination. In addition to participation in meiotic DSB processing, some meiotic DSB hotspots may be originated from the transcription-replication head-on collisions during meiotic DNA replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。