Interaction of genetic variants activates latent metabolic pathways in yeast.

基因变异的相互作用激活酵母中潜在的代谢途径

阅读:14
作者:Sasikumar Srijith, Taylor Parkins Shannara, Sudarsan Suresh, Sinha Himanshu
Genetic interactions are fundamental to the architecture of complex traits, yet the molecular mechanisms by which variant combinations influence cellular pathways remain poorly understood. Here, we answer the question of whether interactions between genetic variants can activate unique pathways and if such pathways can be targeted to modulate phenotypic outcomes. The model organism Saccharomyces cerevisiae was used to dissect how two causal SNPs, MKT1(89G) and TAO3(4477C), interact to modulate metabolic and phenotypic outcomes during sporulation. By integrating time-resolved transcriptomics, absolute proteomics, and targeted metabolomics in isogenic allele replacement yeast strains, we show that the combined presence of these SNPs uniquely activates the arginine biosynthesis pathway and suppresses ribosome biogenesis, reflecting a metabolic trade-off that enhances sporulation efficiency. Functional validation demonstrates that the arginine pathway is essential for mitochondrial activity and efficient sporulation only in the double-SNP background. Our findings show how genetic variant interactions can rewire core metabolic networks, providing a mechanistic framework for understanding polygenic trait regulation and the emergence of additive effects in complex traits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。