The budding yeast, Saccharomyces cerevisiae, has been widely used for genetic studies of fundamental cellular functions. The isolation and analysis of yeast mutants is a commonly used and powerful technique to identify the genes that are involved in a process of interest. Furthermore, natural genetic variation among wild yeast strains has been studied for analysis of polygenic traits by quantitative trait loci mapping. Whole-genome sequencing, often combined with bulk segregant analysis, is a powerful technique that helps determine the identity of mutations causing a phenotype. Here, we describe protocols for the construction of libraries for S. cerevisiae whole-genome sequencing. We also present a bioinformatic pipeline to determine the genetic variants in a yeast strain using whole-genome sequencing data. This pipeline can also be used for analyzing Schizosaccharomyces pombe mutants. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of haploid spores for bulk segregant analysis Basic Protocol 2: Extraction of genomic DNA from yeast cells Basic Protocol 3: Shearing of genomic DNA for library preparation Basic Protocol 4: Construction and amplification of DNA libraries Support Protocol 1: Annealing oligonucleotides for forming Y-adapters Support Protocol 2: Size selection and cleanup using SPRI beads Basic Protocol 5: Identification of genomic variants from sequencing data.
Whole-Genome Sequencing of Yeast Cells.
酵母细胞全基因组测序
阅读:4
作者:Gopalakrishnan Rajaraman, Winston Fred
| 期刊: | Current Protocols in Molecular Biology | 影响因子: | 0.000 |
| 时间: | 2019 | 起止号: | 2019 Sep;128(1):e103 |
| doi: | 10.1002/cpmb.103 | 种属: | Yeast |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
