Normal sensory and cognitive function of the brain relies on its intricate and complex neural network. Synaptogenesis and synaptic plasticity are critical to neural circuit formation and maintenance, which are regulated by coordinated intracellular and extracellular signaling. Growth hormone (GH) is the most abundant anterior pituitary hormone. Its deficiencies could alter brain development and impair learning and memory, while GH replacement therapy in human patients and animal models has been shown to ameliorate cognitive deficits caused by GH deficiency. However, the underlying mechanism remains largely unknown. In this study, we investigated the neuromodulatory function of GH in young (pre-weaning) mice at two developmental time points and in two different brain regions. Neonatal mice were subcutaneously injected with recombinant human growth hormone (rhGH) on postnatal day (P) 14 or 21. Excitatory and inhibitory synaptic transmission was measured using whole-cell recordings in acute cortical slices 2âh after the injection. We showed that injection of rhGH (2âmg/kg) in P14 mice significantly increased the frequency of mEPSCs, but not that of mIPSCs, in both hippocampal CA1 pyramidal neurons and L2/3 pyramidal neurons of the barrel field of the primary somatosensory cortex (S1BF). Injection of rhGH (2âmg/kg) in P21 mice significantly increased the frequency of mEPSCs and mIPSCs in both brain regions. Perfusion of rhGH (1âμM) onto acute brain slices in P14 mice had similar effects. Consistent with the electrophysiological results, the dendritic spine density of CA1 pyramidal neurons and S1BF L2/3 pyramidal neurons increased following in vivo injection of rhGH. Furthermore, NMDA receptors and postsynaptic calcium-dependent signaling contributed to rhGH-dependent regulation of both excitatory and inhibitory synaptic transmission. Together, these results demonstrate that regulation of excitatory and inhibitory synaptic transmission by rhGH occurs in a developmentally dynamic manner, and have important implication for identifying GH treatment strategies without disturbing excitation/inhibition balance.
Dynamic regulation of excitatory and inhibitory synaptic transmission by growth hormone in the developing mouse brain.
生长激素对发育中小鼠大脑兴奋性和抑制性突触传递的动态调节
阅读:8
作者:Li Guang-Ying, Wu Qiu-Zi, Song Tian-Jia, Zhen Xue-Chu, Yu Xiang
| 期刊: | Acta Pharmacologica Sinica | 影响因子: | 8.400 |
| 时间: | 2023 | 起止号: | 2023 Jun;44(6):1109-1121 |
| doi: | 10.1038/s41401-022-01027-w | 种属: | Mouse |
| 研究方向: | 信号转导 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
