BACKGROUND: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q. petraea). RESULTS: Adding PNA clamps to PCR led to an overall reduction of host chloroplast and mitochondrial 16S rRNA gene sequences of 79%, 46% and 99% in leaf, bark and root tissues, respectively. This resulted in an average increase in bacterial sequencing reads of 72%, 35%, and 17% in leaf, bark, and root tissue, respectively. Moreover, the bacterial diversity in the leaf and bark increased, with the number of ASVs rising by 105 in the leaf samples and 218 in the bark samples, respectively. In root tissues, where host oak chloroplast and mitochondria contamination were low, alpha and beta diversity did not change, suggesting the PNA clamps did not bias the bacterial community. CONCLUSION: In conclusion, this study shows that PNA clamps can effectively reduce host chloroplast and mitochondria PCR amplification and improve assessment of the detected bacterial diversity in Quercus petraea and Quercus robur bacterial 16S rRNA gene sequencing studies.
Peptide nucleic acid (PNA) clamps reduce amplification of host chloroplast and mitochondria rRNA gene sequences and increase detected diversity in 16S rRNA gene profiling analysis of oak-associated microbiota.
肽核酸 (PNA) 钳可减少宿主叶绿体和线粒体 rRNA 基因序列的扩增,并增加橡树相关微生物群 16S rRNA 基因谱分析中检测到的多样性
阅读:5
作者:Hussain Usman, Downie Jim, Ellison Amy, Denman Sandra, McDonald James, Cambon Marine C
| 期刊: | Environmental Microbiome | 影响因子: | 5.400 |
| 时间: | 2025 | 起止号: | 2025 Jan 28; 20(1):14 |
| doi: | 10.1186/s40793-025-00674-w | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
