The gram-positive pathogen Streptococcus pyogenes injects a beta-NAD(+) glycohydrolase (SPN) into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. In this compartment, SPN accelerates the death of the host cell by an unknown mechanism that may involve its beta-NAD(+)-dependent enzyme activities. SPN has been reported to possess the unique characteristic of not only catalyzing hydrolysis of beta-NAD(+), but also carrying out ADP-ribosyl cyclase and ADP-ribosyltransferase activities, making SPN the only beta-NAD(+) glycohydrolase that can catalyze all of these reactions. With the long term goal of understanding how these activities may contribute to pathogenesis, we have further characterized the enzymatic activity of SPN using highly purified recombinant protein. Kinetic studies of the multiple activities of SPN revealed that SPN possessed only beta-NAD(+) hydrolytic activity and lacked detectable ADP-ribosyl cyclase and ADP-ribosyltransferase activities. Similarly, SPN was unable to catalyze cyclic ADPR hydrolysis, and could not catalyze methanolysis or transglycosidation. Kinetic analysis of product inhibition by recombinant SPN demonstrated an ordered uni-bi mechanism, with ADP-ribose being released as a second product. SPN was unaffected by product inhibition using nicotinamide, suggesting that this moiety contributes little to the binding energy of the substrate. Upon transformation, SPN was toxic to Saccharomyces cerevisiae, whereas a glycohydrolase-inactive SPN allowed for viability. Taken together, these data suggest that SPN functions exclusively as a strict beta-NAD(+) glycohydrolase during pathogenesis.
Characterization of Streptococcus pyogenes beta-NAD+ glycohydrolase: re-evaluation of enzymatic properties associated with pathogenesis.
化脓性链球菌β-NAD+糖苷水解酶的特性:重新评估与致病性相关的酶学特性
阅读:5
作者:Ghosh Joydeep, Anderson Patricia J, Chandrasekaran Sukantha, Caparon Michael G
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2010 | 起止号: | 2010 Feb 19; 285(8):5683-94 |
| doi: | 10.1074/jbc.M109.070300 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
