Critical role of trkB receptors in reactive axonal sprouting and hyperexcitability after axonal injury.

trkB 受体在轴突损伤后的反应性轴突萌生和过度兴奋中起关键作用

阅读:6
作者:Aungst Stephanie, England Pamela M, Thompson Scott M
Traumatic brain injury (TBI) causes many long-term neurological complications. Some of these conditions, such as posttraumatic epilepsy, are characterized by increased excitability that typically arises after a latent period lasting from months to years, suggesting that slow injury-induced processes are critical. We tested the hypothesis that trkB activation promotes delayed injury-induced hyperexcitability in part by promoting reactive axonal sprouting. We modeled penetrative TBI with transection of the Schaffer collateral pathway in knock-in mice having an introduced mutation in the trkB receptor (trkB(F616A)) that renders it susceptible to inhibition by the novel small molecule 1NMPP1. We observed that trkB activation was increased in area CA3 1 day after injury and that expression of a marker of axonal growth, GAP43, was increased 7 days after lesion. Extracellular field potentials in stratum pyramidale of area CA3 in acute slices from sham-operated and lesioned mice were normal in control saline. Abnormal bursts of population spikes were observed under conditions that were mildly proconvulsive but only in slices taken from mice lesioned 7-21 days earlier and not in slices from control mice. trkB activation, GAP43 upregulation, and hyperexcitability were diminished by systemic administration of 1NMPP1 for 7 days after the lesion. Synaptic transmission from area CA3 to area CA1 recovered 7 days after lesion in untreated mice but not in mice treated with 1NMPP1. We conclude that trkB receptor activation and reactive axonal sprouting are critical factors in injury-induced hyperexcitability and may contribute to the neurological complications of TBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。