Histone deacetylase (HDAC) 7 is a member of the HDAC family of deacetylases. Although some of the HDAC proteins have been shown to regulate neuronal survival and death, whether HDAC7 has a similar role is not known. In this study, we show that HDAC7 protects neurons from apoptosis. In cerebellar granule neurons (CGNs) primed to undergo apoptosis by low potassium treatment, expression of HDAC7 protein is reduced. Reduced expression is also observed in CGNs induced to die by pharmacological inhibition of the proteasome, in cortical neurons treated with homocysteic acid, and in the striatum of R6/2 transgenic mice, a commonly used genetic model of Huntington disease. Forced expression of HDAC7 in cultured CGNs blocks low potassium-induced death, and shRNA-mediated suppression of its expression induces death in otherwise healthy neurons. HDAC7-mediated neuroprotection does not require its catalytic domain and cannot be inhibited by chemical inhibitors of HDACs. Moreover, pharmacological inhibitors of the PI3K-Akt or Raf-MEK-ERK signaling pathways or that of PKA, PKC, and Ca(2+)/calmodulin-dependent protein kinase fail to reduce neuroprotection by HDAC7. We show that stimulation of c-jun expression, an essential feature of neuronal death, is prevented by HDAC7. shRNA-mediated suppression of HDAC7 expression leads to an increase in c-jun expression. Inhibition of c-jun expression by HDAC7 is mediated at the transcriptional level by its direct association with the c-jun gene promoter. Taken together, our results indicate that HDAC7 is a neuroprotective protein acting by a mechanism that is independent of its deacetylase activity but involving the inhibition of c-jun expression.
Neuroprotection by histone deacetylase-7 (HDAC7) occurs by inhibition of c-jun expression through a deacetylase-independent mechanism.
组蛋白去乙酰化酶-7 (HDAC7) 通过一种不依赖于去乙酰化的机制抑制 c-jun 的表达,从而发挥神经保护作用
阅读:3
作者:Ma Chi, D'Mello Santosh R
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2011 | 起止号: | 2011 Feb 11; 286(6):4819-28 |
| doi: | 10.1074/jbc.M110.146860 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
