Radiation therapy is one of the most effective methods of tumor eradication; however, in some forms of neuroblastoma, radiation can increase the risk of secondary neoplasms, due to the ability of irradiated cells to transmit pro-survival signals to non-irradiated cells through vesicle secretion. The aims of this study were to characterize the vesicles released by the human neuroblastoma cell line SH-SY5Y following X-ray radiations and their ability to increase invasiveness in non-irradiated SH-SY5Y cells. We first purified the extracellular vesicles released by the SH-SY5Y cells following X-rays, and then determined their total amount, dimensions, membrane protein composition, and cellular uptake. We also examined the effects of these extracellular vesicles on viability, migration, and DNA damage in recipient SH-SY5Y cells. We found that exposure to X-rays increased the release of extracellular vesicles and altered their protein composition. These vesicles were readily uptaken by non-irradiated cells, inducing an increase in viability, migration, and radio-resistance. The same results were obtained in an MYCN-amplified SK-N-BE cell line. Our study demonstrates that vesicles released from irradiated neuroblastoma cells stimulate proliferation and invasiveness that correlate with the epithelial to mesenchymal transition in non-irradiated cells. Moreover, our results suggest that, at least in neuroblastomas, targeting the extracellular vesicles may represent a novel therapeutic approach to counteract the side effects associated with radiotherapy.
Ionizing Radiation-Induced Extracellular Vesicle Release Promotes AKT-Associated Survival Response in SH-SY5Y Neuroblastoma Cells.
电离辐射诱导的细胞外囊泡释放促进 SH-SY5Y 神经母细胞瘤细胞中 AKT 相关的生存反应
阅读:4
作者:Tortolici Flavia, Vumbaca Simone, Incocciati Bernadette, Dayal Renu, Aquilano Katia, Giovanetti Anna, Rufini Stefano
| 期刊: | Cells | 影响因子: | 5.200 |
| 时间: | 2021 | 起止号: | 2021 Jan 8; 10(1):107 |
| doi: | 10.3390/cells10010107 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
