Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell type annotation for images with a wide range of antibody panels, without requiring additional model training or human intervention. Our tool has successfully annotated over 3 million cells, revealing the spatial organization of various cell types across more than 40 different human tissues. It is open-source and features a modular design, allowing for easy extension to additional cell types.
Flexible and robust cell type annotation for highly multiplexed tissue images.
适用于高通量组织图像的灵活、强大的细胞类型注释
阅读:4
作者:Sun Huangqingbo, Yu Shiqiu, Casals Anna Martinez, Bäckström Anna, Lu Yuxin, Lindskog Cecilia, Ruffalo Matthew, Lundberg Emma, Murphy Robert F
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Dec 17 |
| doi: | 10.1101/2024.09.12.612510 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
