INTRODUCTION/AIMS: The tumor microenvironment is known to play an important role in tumor progression. However, the specific mechanisms underlying this process are still not known in detail and more research is needed on the elements that control tumor progression in lung cancer. In this work, we aimed to investigate the involvement of epithelial and stromal cancer cells in growth, cell migration, and epithelial-to-mesenchymal transition (EMT) in a 3D in vitro model consisting of cell spheroids cultured in a type I collagen scaffold. METHODS: Spheroids were manufactured using different combinations of epithelial cells, particularly H460 and H1792 cell lines, with cancer-associated fibroblasts and normal fibroblasts, both isolated from adenocarcinoma patients. We evaluated the morphology of the spheroids by analysis of F-actin and pankeratin with confocal microscopy. We determined the ultrastructure of cells in the spheroids by transmission electron microscopy and the expression of CDH1, CDH2, and VIM by RT-PCR. RESULTS: We observed that, on the one hand, the type of epithelial cell influences the morphology of spheroids. Stromal cells stimulated spheroid growth and cell dissemination through the collagen matrix, either alone or organized in branches with a nucleus of epithelial cells preceded by fibroblast cells. They also induced the appearance of new cell groups in the scaffold and the presence of EMT markers. CONCLUSION: The results presented here indicate the participation of both epithelial and stromal cells in the control of spheroid self-organization. The experimental model proposed here, although preliminary, is useful for the study of some aspects related to tumor progression in lung cancer.
Cancer Epithelial Cells Participate in the Self-Organization of Lung Tumor Spheroids: A Morphological Approach.
癌症上皮细胞参与肺肿瘤球体的自组织:形态学方法
阅读:11
作者:Monleón-Guinot Irene, Bravo-Baranda LucÃa, Milián Lara, Sancho-Tello MarÃa, Llop-Miguel Mauro, Galbis José Marcelo, Cremades Antonio, Carda Carmen, Mata Manuel
| 期刊: | Cells Tissues Organs | 影响因子: | 1.900 |
| 时间: | 2025 | 起止号: | 2025;214(3):219-241 |
| doi: | 10.1159/000541524 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
