A replication study of novel fetal hemoglobin-associated genetic variants in sickle cell disease-only cohorts

一项针对仅患有镰状细胞病的队列中新型胎儿血红蛋白相关基因变异的重复研究

阅读:2
作者:Yann Ilboudo ,Nicolas Brosseau ,Ken Sin Lo ,Hicham Belhaj ,Stéphane Moutereau ,Kwesi Marshall ,Marvin Reid ,Abdullah Kutlar ,Allison E Ashley-Koch ,Marilyn J Telen ,Philippe Joly ,Frédéric Galactéros ,Pablo Bartolucci ,Guillaume Lettre
Sickle cell disease (SCD) is the most common monogenic disease in the world and is caused by mutations in the β-globin gene (HBB). Notably, SCD is characterized by extreme clinical heterogeneity. Inter-individual variation in fetal hemoglobin (HbF) levels strongly contributes to this patient-to-patient variability, with high HbF levels associated with decreased morbidity and mortality. Genetic association studies have identified and replicated HbF levels-associated variants at three loci: BCL11A, HBS1L-MYB, and HBB. In SCD patients, genetic variation at these three loci accounts for ~ 50% of HbF heritability. Genome-wide association studies (GWAS) in non-anemic and SCD patients of multiple ancestries have identified 20 new HbF-associated variants. However, these genetic associations have yet to be replicated in independent SCD cohorts. Here, we validated the association between HbF levels and variants at five of these new loci (ASB3, BACH2, PFAS, ZBTB7A, and KLF1) in up to 3740 SCD patients. By combining CRISPR inhibition and single-cell transcriptomics, we also showed that sequences near non-coding genetic variants at BACH2 (rs4707609) and KLF1 (rs2242514, rs10404876) can control the production of the β-globin genes in erythroid HUDEP-2 cells. Finally, we analyzed whole-exome sequence data from 1354 SCD patients but could not identify rare genetic variants of large effect on HbF levels. Together, our results confirm five new HbF-associated loci that can be functionally studied to develop new strategies to induce HbF expression in SCD patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。