Intervertebral disc degeneration is commonly associated with back and neck pain, and standard surgical treatments do not restore spine function. Replacement of the degenerative disc with a living, tissue-engineered construct has the potential to restore normal structure and function to the spine. Toward this goal, our group developed endplate-modified disc-like angle-ply structures (eDAPS) that recapitulate the native structure and function of the disc. While our initial large animal studies utilized rigid internal fixation of the eDAPS implanted level to ensure retention of the eDAPS, chronic immobilization does not restore full function and is detrimental to the spinal motion segment. The purpose of this study was to utilize a goat cervical disc replacement model coupled with finite element modeling of goat cervical motion segments to investigate the effects of remobilization (removal of fixation) on the eDAPS, the facet joints and the adjacent paraspinal muscle. Our results demonstrated that chronic immobilization caused notable degeneration of the facet joints and paraspinal muscles adjacent to eDAPS implants. Remobilization improved eDAPS composition and integration and mitigated, but did not fully reverse, facet joint osteoarthritis and paraspinal muscle atrophy and fibrosis. Finite element modeling revealed that these changes were likely due to reduced range of motion and reduced facet loading, highlighting the importance of maintaining normal spine biomechanical function with any tissue engineered disc replacement. STATEMENT OF SIGNIFICANCE: Back and neck pain are ubiquitous in modern society, and the gold standard surgical treatment of spinal fusion limits patient function. This study advances our understanding of the response of the spinal motion segment to tissue engineered disc replacement with provisional fixation in a large animal model, further advancing the clinical translation of this technology.
Restoration of physiologic loading after engineered disc implantation mitigates immobilization-induced facet joint and paraspinal muscle degeneration.
人工椎间盘植入后恢复生理负荷可减轻制动引起的关节突关节和椎旁肌肉退化
阅读:14
作者:Gullbrand Sarah E, Kiapour Ali, Barrett Caitlin, Fainor Matthew, Orozco Brianna S, Hilliard Rachel, Mauck Robert L, Hast Michael W, Schaer Thomas P, Smith Harvey E
| 期刊: | Acta Biomaterialia | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Jan 15; 192:128-139 |
| doi: | 10.1016/j.actbio.2024.12.014 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
