Low dose methotrexate (LD-MTX) remains the gold standard in rheumatoid arthritis (RA) therapy. Multiple mechanisms on a variety of immune cells contribute to the anti-inflammatory effects of LD-MTX. Inflammatory signaling is deeply implicated in hematopoiesis by regulating hematopoietic stem and progenitor cell (HSPC) fate decisions; raising the question of whether HSPC are also modulated by LD-MTX. This is the first study to characterize the effects of LD-MTX on HSPC. CD34(+) HSPC were isolated from healthy donors' non-mobilized peripheral blood. Resting and/or cycling HSPCs were treated with LD-MTX [dose equivalent to that used in RA patients]. Flow cytometry was performed to assess HSPC viability, cell cycle, surface abundance of reduced folate carrier 1 (RFC1), proliferation, reactive oxygen species (ROS) levels, DNA double-strand breaks, p38 activation, and CD34(+) subpopulations. HSPC clonogenicity was tested in colony-forming cell assays. Our results indicate that in cycling HSPC, membrane RFC1 is upregulated and, following LD-MTX treatment, they accumulate more intracellular MTX than resting HSPC. In cycling HSPC, LD-MTX inhibits HSPC expansion by promoting S-phase cell-cycle arrest, increases intracellular HSPC ROS levels and DNA damage, and reduces HSPC viability. Those effects involve the activation of the p38 MAPK pathway and are rescued by folinic acid. The effects of LD-MTX are more evident in CD34(+)âCD38High progenitors. In non-cycling HSPC, LD-MTX also reduces the proliferative response while preserving their clonogenicity. In summary, HSPC uptake LD-MTX differentially according to their cycling state. In turn, LD-MTX results in reduced proliferation and the preservation of HSPC clonogenicity.
Low Dose Methotrexate Has Divergent Effects on Cycling and Resting Human Hematopoietic Stem and Progenitor Cells.
低剂量甲氨蝶呤对处于增殖期和静止期的人类造血干细胞和祖细胞具有不同的作用
阅读:10
作者:Lora Maximilien, Ménard H A, Nijnik Anastasia, Langlais David, Hudson Marie, Colmegna Inés
| 期刊: | Cts-Clinical and Translational Science | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 May;18(5):e70233 |
| doi: | 10.1111/cts.70233 | 种属: | Human |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
