Spina bifida is a congenital neural tube defect that has a high risk of secondary neurological deterioration due to tethering of the spinal cord. We present the first application of human umbilical cord-derived mesenchymal stromal cell-derived extracellular vesicle (UC-MSC-EV) therapy in humans during spina bifida surgery. We discuss the application, post-operative outcome and highlight the potential of extracellular vesicle therapy in the management of spina bifida. Administration of extracellular vesicles containing therapeutically active agents has emerged as a potential new treatment modality for neurological disorders. By direct intrathecal application during surgery, UC-MSC-EVs can deliver therapeutic payloads to target cells and the extracellular environment, offering a novel approach to neuroprotection and tissue repair. A 2-year-old girl diagnosed with spina bifida presented with progressive syringomyelia as sign of secondary tethered cord syndrome with intramedullary dermoid inclusion tumour after postnatal spina bifida repair. After pre-operative assessment and multidisciplinary consultation, it was decided to proceed with spinal cord release surgery with the use of EV. During the surgical procedure, the tethered cord was released, dermoid and lipoma tissue were resected. Concurrently, UC-MSC-EVs were administered directly onto the released placode and spinal cord. Post-operative MRI demonstrated a good de-tethering effect and no medullary oedema. No adverse events were reported. The neurological deficit remained unchanged at 6 months follow-up examination. Intraoperative application of UC-MSC-EVs might be an option to ameliorate intrathecal scarring following spina bifida surgery. Whether EVs will result in significant effects for the long-term neurological outcome needs to be studied in randomised clinical trials.
First-In-Human Application of Human Umbilical Cord-Derived Extracellular Vesicles in Tethered Spinal Cord Release Surgery.
人类脐带来源的细胞外囊泡首次应用于脊髓栓系松解手术
阅读:9
作者:Krause Matthias, Gburek-Augustat Janina, Gräfe Daniel, Metzger Roman, Ginzel Marco, Griessenauer Christoph J, Grassner Lukas, Weghuber Daniel, Gradl Johann, Auer Daniela, Schally Tanja, Rund Stefan, Kals Carina, Folie Christina, Bayer Elisabeth, Gimona Mario, Rohde Eva
| 期刊: | Journal of Extracellular Vesicles | 影响因子: | 14.500 |
| 时间: | 2025 | 起止号: | 2025 Jun;14(6):e70104 |
| doi: | 10.1002/jev2.70104 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
