Monoclonal antibodies and ligands targeting CD40 exhibit a wide range of agonistic activities and antitumor responses. Studies have shown that the flexibility and affinity of antibodies play a crucial role in their immunostimulatory activity. However, a systematic comparison with the natural ligand is yet missing and a detailed investigation with respect to molecular rigidity, binding kinetics, and bond lifetime has not been undertaken to date. Here, we study the dynamic binding features of clinically relevant anti-hCD40 antibody subclasses, ChiLob 7/4, and the trimeric human CD40L to hCD40 at the single-molecule level. We visualize resembling of hCD40 receptors into dimers and higher-order oligomers that are dynamically captured and released by both ChiLob 7/4 and hCD40L with their multiple binding sites. Thereby, ChiLob 7/4 acts as a nanomechanical calliper and rotates its Fab arms in a highly dynamic fashion to screen for hCD40 binding, while hCD40L undergoes significantly less conformational changes. Despite its minor molecular flexibility, hCD40L performs association, dissociation, and re-association of hCD40 ten times faster when compared to ChiLob 7/4. We uncover a distinct binding mechanism that may explain the enhanced cluster formation potential and agonistic activity of the natural ligand and will inspire the design of novel ligand formats.
Nanomechanical binding mechanism of ligands drives agonistic activity.
配体的纳米机械结合机制驱动激动活性
阅读:6
作者:Seferovic Hannah, Sticht Patricia, Hain Lisa, Zhu Rong, Diethör Sebastian, Wechselberger Christian, Weber Florian, Bernhard David, Plochberger Birgit, Oh Yoo Jin, Chaparro-Riggers Javier, Hinterdorfer Peter
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 19; 16(1):6674 |
| doi: | 10.1038/s41467-025-61929-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
