Nematic liquid crystal boojums with handles on colloidal handlebodies.

带有胶体手柄体的向列相液晶boojum

阅读:4
作者:Liu Qingkun, Senyuk Bohdan, Tasinkevych Mykola, Smalyukh Ivan I
Topological defects that form on surfaces of ordered media, dubbed boojums, are ubiquitous in superfluids, liquid crystals (LCs), Langmuir monolayers, and Bose-Einstein condensates. They determine supercurrents in superfluids, impinge on electrooptical switching in polymer-dispersed LCs, and mediate chemical response at nematic-isotropic fluid interfaces, but the role of surface topology in the appearance, stability, and core structure of these defects remains poorly understood. Here, we demonstrate robust generation of boojums by controlling surface topology of colloidal particles that impose tangential boundary conditions for the alignment of LC molecules. To do this, we design handlebody-shaped polymer particles with different genus g. When introduced into a nematic LC, these particles distort the nematic molecular alignment field while obeying topological constraints and induce at least 2g - 2 boojums that allow for topological charge conservation. We characterize 3D textures of boojums using polarized nonlinear optical imaging of molecular alignment and explain our findings by invoking symmetry considerations and numerical modeling of experiment-matching director fields, order parameter variations, and nontrivial handle-shaped core structure of defects. Finally, we discuss how this interplay between the topologies of colloidal surfaces and boojums may lead to controlled self-assembly of colloidal particles in nematic and paranematic hosts, which, in turn, may enable reconfigurable topological composites.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。