Characteristics of the Cajal interstitial cells and intestinal microbiota in children with refractory constipation

难治性便秘患儿Cajal间质细胞及肠道菌群特征

阅读:5
作者:Yi Yuan, Yan Lu, Zhihua Zhang, Weixia Cheng, Kunlong Yan, Yucan Zheng, Yu Jin, Zhifeng Liu

Background

Children with refractory constipation experience intense and persistent symptoms that greatly diminish their quality of life. However, the underlying pathophysiological mechanism responsible for this condition remains uncertain. Our

Conclusions

Dysmotility subjects showed lower colonic motility and an impaired postprandial colonic response. The decreased number and abnormal morphology of colonic ICCs may contribute to the pathogenesis of refractory constipation. Children with refractory constipation exhibited significant variations in microbiota composition across various taxonomic levels compared to the healthy control group. Our findings contribute valuable insights into pathophysiological mechanism underlying refractory constipation and provide evidence to support the exploration of novel therapeutic strategies for affected children.

Methods

Colonic manometry (CM) was conducted on a cohort of 30 patients with refractory constipation to assess colonic motility, and 7 of them underwent full-thickness colon biopsy specimens. Another 5 colonic specimens from nonconstipation patients were collected to identify the ICCs by immunohistochemistry. Fecal samples from 14 children diagnosed with refractory constipation and subjecting 28 age-matched healthy children to analysis using high-throughput sequencing of 16S rRNA.

Results

According to CM results, dividing 30 children with refractory constipation into 2 groups: normal group (n = 10) and dysmotility group (n = 20). Dysmotility subjects showed lower colonic motility. Antegrade propagating pressure waves, retrograde propagating pressure waves, and periodic colonic motor activity were common in normal subjects and rare in dysmotility subjects (32.7 ± 8.9 vs 20.7 ± 13.0/17 h, P < 0.05, 11.5 ± 2.3 vs 9.6 ± 2.3/17 h, P < 0.05, and 5.2 ± 8.9 vs 3.5 ± 6.8 cpm, P < 0.005, respectively), whereas periodic rectal motor activity was more common in dysmotility subjects (3.4 ± 4.8 vs 3.0 ± 3.1 cpm, P < 0.05). Dysmotility subjects exhibited a significantly greater number of preprandial simultaneous pressure waves compared to the normal subjects (32.3 ± 25.0 vs 23.6 ± 13.2/1 h, P < 0.005). Dysmotility subjects displayed a notable decrease in postprandial count of antegrade propagating pressure waves and high amplitude propagating pressure waves when compared to normal subjects (3.9 ± 2.9 vs 6.9 ± 3.5/1 h and 2.3 ± 1.5 vs 5.4 ± 2.9/1 h, respectively, P < 0.05). The number, distribution, and morphology of ICCs were markedly altered in refractory constipation compared children to the controls (P < 0.05). Children diagnosed with refractory constipation displayed a distinct dissimilarity in composition of their intestinal microbiota comparing with control group (P < 0.005). In genus level, Bacteroidetes represented 34.34% and 43.78% in the refractory constipation and control groups, respectively. Faecalibacterium accounted for 3.35% and 12.56%, respectively (P < 0.005). Furthermore, the relative abundances of Faecalibacterium (P < 0.005), Lachnospira (P < 0.05), and Haemophilus (P < 0.05) significantly decreased, whereas those of Parabacteroides (P < 0.05), Alistipes (P < 0.005), Prevotella_2 (P < 0.005), [Ruminococcus]_torques_group (P < 0.005), Barnesiella (P < 0.05), Ruminococcaceae_UCG-002 (P < 0.005), and Christensensenellaceae_R-7_group (P < 0.05) were markedly increased in children with refractory constipation. Conclusions: Dysmotility subjects showed lower colonic motility and an impaired postprandial colonic response. The decreased number and abnormal morphology of colonic ICCs may contribute to the pathogenesis of refractory constipation. Children with refractory constipation exhibited significant variations in microbiota composition across various taxonomic levels compared to the healthy control group. Our findings contribute valuable insights into pathophysiological mechanism underlying refractory constipation and provide evidence to support the exploration of novel therapeutic strategies for affected children.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。