Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium. Transdifferentiation of simple columnar uterine epithelium into stratified cervicovaginal-like epithelium was observed in three related mouse genetic models, in which RA signaling was perturbed in the postnatal uterus. Single-cell RNA sequencing analysis identified the transformed epithelial cell populations and revealed extensive immune cell infiltration resulting from loss of RA signaling. Surprisingly, disruption of RA signaling led to dysregulated expression of a substantial number of estrogen target genes, suggesting that these two pathways may functionally oppose each other in determining and maintaining uterine epithelial cell fate. Consistent with this model, neonatal exposure to the strong synthetic estrogen, diethylstilbestrol, downregulated expression of a group of RA target genes and led to epithelial stratification and immune cell infiltration in wild-type uterus. Treating RA receptor triple conditional knockout pups with fulvestrant, an estrogen antagonist, reestablished the balance between the two signaling pathways, and effectively prevented the transformation of mutant simple columnar epithelia to metaplastic stratified epithelia. These findings implicate an essential role for RA signaling in maintaining uterine cytodifferentiation by antagonizing estrogen signaling in the postnatal uterus.
Retinoic acid antagonizes estrogen signaling to maintain adult uterine cell fate.
维甲酸拮抗雌激素信号传导,从而维持成年子宫细胞的命运
阅读:4
作者:Yin Yan, Haller Meade, Goldinger Lauren, Bharadwaj Shivani, So Emily, Robles-Pinos Vivian, Chen David, Ma Liang
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Feb 4; 122(5):e2416089122 |
| doi: | 10.1073/pnas.2416089122 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
