SLAM-seq reveals independent contributions of RNA processing and stability to gene expression in African trypanosomes.

SLAM-seq 揭示了 RNA 加工和稳定性对非洲锥虫基因表达的独立贡献

阅读:3
作者:Luzak Vanessa, Osses Esteban, Danese Anna, Odendaal Christoff, Cosentino Raúl O, Stricker Stefan H, Haanstra Jurgen R, Erhard Florian, Siegel T Nicolai
Gene expression is a multi-step process that converts DNA-encoded information into proteins, involving RNA transcription, maturation, degradation, and translation. While transcriptional control is a major regulator of protein levels, the role of post-transcriptional processes such as RNA processing and degradation is less well understood due to the challenge of measuring their contributions individually. To address this challenge, we investigated the control of gene expression in Trypanosoma brucei, a unicellular parasite assumed to lack transcriptional control. Instead, mRNA levels in T. brucei are controlled by post-transcriptional processes, which enabled us to disentangle the contribution of both processes to total mRNA levels. In this study, we developed an efficient metabolic RNA labeling approach and combined ultra-short metabolic labeling with transient transcriptome sequencing (TT-seq) to confirm the long-standing assumption that RNA polymerase II transcription is unregulated in T. brucei. In addition, we established thiol (SH)-linked alkylation for metabolic sequencing of RNA (SLAM-seq) to globally quantify RNA processing rates and half-lives. Our data, combined with scRNA-seq data, indicate that RNA processing and stability independently affect total mRNA levels and contribute to the variability seen between individual cells in African trypanosomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。