Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler

使用 LipocyteProfiler 发现代谢特征的内在和外在驱动因素的细胞程序

阅读:6
作者:Samantha Laber, Sophie Strobel, Josep M Mercader, Hesam Dashti, Felipe R C Dos Santos, Phil Kubitz, Maya Jackson, Alina Ainbinder, Julius Honecker, Saaket Agrawal, Garrett Garborcauskas, David R Stirling, Aaron Leong, Katherine Figueroa, Nasa Sinnott-Armstrong, Maria Kost-Alimova, Giacomo Deodato, A

Abstract

A primary obstacle in translating genetic associations with disease into therapeutic strategies is elucidating the cellular programs affected by genetic risk variants and effector genes. Here, we introduce LipocyteProfiler, a cardiometabolic-disease-oriented high-content image-based profiling tool that enables evaluation of thousands of morphological and cellular profiles that can be systematically linked to genes and genetic variants relevant to cardiometabolic disease. We show that LipocyteProfiler allows surveillance of diverse cellular programs by generating rich context- and process-specific cellular profiles across hepatocyte and adipocyte cell-state transitions. We use LipocyteProfiler to identify known and novel cellular mechanisms altered by polygenic risk of metabolic disease, including insulin resistance, fat distribution, and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward and reverse deep phenotypic profiling in lipocytes and provides a framework for the unbiased identification of causal relationships between genetic variants and cellular programs relevant to human disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。