Prefrontal FGF1 Signaling is Required for Accumbal Deep Brain Stimulation Treatment of Addiction.

前额叶 FGF1 信号传导是伏隔核深部脑刺激治疗成瘾所必需的

阅读:11
作者:Gong Wan-Kun, Li Xue, Wang Le, Yang Qian, Tiran-Cappello Alix, Liang Zhichao, Samsom James, Liu Quanying, Lin He, Baunez Christelle, Liu Fang, Yuan Ti-Fei
Deep brain stimulation (DBS) has emerged as a prospective treatment for psychiatric disorders; for example, DBS targeting the nucleus accumbens (NAc) abolishes addictive behaviors. However, neither the core pathway nor the cellular mechanisms underlying these therapeutic effects are known. Here, morphine-induced conditioned place preference (CPP) in mice as an addiction model and NAc-DBS combined with adeno-associated virus gene delivery for activity-dependent tagging, transgenic and chemogenetic manipulation of recruited neuronal networks are used. It is reported that a cortical-accumbal pathway and local fibroblast growth factor 1 (FGF1) signaling in the medial prefrontal cortex (mPFC) are critical for NAc-DBS to be effective in altering morphine CPP. It is shown that NAc-DBS retrogradely activates mPFC neurons projecting to the NAc, and chemogenetic activation/inhibition of these DBS-activated neuron ensembles in the mPFC reproduces the NAc-DBS effects on CPP. Sustained therapeutic effects accompany reductions in local FGF1 binding to fibroblast growth factor receptor 1 (FGFR1) in these neurons. Additionally, overexpressing FGF1 in the mPFC-NAc pathway abolishes the therapeutic effects of NAc-DBS. These results demonstrate that the mPFC-NAc pathway forms a top-down motif to regulate the therapeutic effects of subcortical DBS on addiction. These results support the potential for addiction treatments involving FGF1 signaling and highlight the mPFC as a target for noninvasive brain stimulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。