Natural environments are highly dynamic, and this complexity challenges animals to accurately integrate external cues to shape their responses. Adaptive developmental plasticity enables organisms to remodel their physiology, morphology, and behavior to better suit the predicted future environment and ultimately enhance their ecological success.(1) Understanding how an animal generates a neural representation of current and forecasted environmental conditions and converts these circuit computations into a predictive adaptive physiological response may provide fundamental insights into the molecular and cellular basis of decision-making over developmentally relevant timescales. Although it is known that sensory cues usually trigger the developmental switch and that downstream inter-tissue signaling pathways enact the alternative developmental phenotype, the integrative neural mechanisms that transduce external inputs into effector pathways are less clear.(2)(,)(3) In adverse environments, Caenorhabditis elegans larvae can enter a stress-resistant diapause state with arrested metabolism and reproductive physiology.(4) Amphid sensory neurons feed into both rapid chemotactic and short-term foraging mode decisions, mediated by amphid and pre-motor interneurons, as well as the long-term diapause entry decision. Here, we identify amphid interneurons that integrate pheromone cues and propagate this information via a neuropeptidergic pathway to influence larval developmental fate, bypassing the pre-motor system. AIA interneuron-derived FLP-2 neuropeptide signaling promotes reproductive growth, and AIA activity is suppressed by pheromones. FLP-2 signaling is inhibited by upstream glutamatergic transmission via the metabotropic receptor MGL-1 and mediated by the broadly expressed neuropeptide G-protein-coupled receptor NPR-30. Thus, metabotropic signaling allows the reuse of parts of a sensory system for a decision with a distinct timescale.
Interneuron control of C. elegans developmental decision-making.
中间神经元控制秀丽隐杆线虫的发育决策
阅读:5
作者:Chai Cynthia M, Torkashvand Mahdi, Seyedolmohadesin Maedeh, Park Heenam, Venkatachalam Vivek, Sternberg Paul W
| 期刊: | Current Biology | 影响因子: | 7.500 |
| 时间: | 2022 | 起止号: | 2022 May 23; 32(10):2316-2324 |
| doi: | 10.1016/j.cub.2022.03.077 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
