Episodic rhythmicity is generated by a distributed neural network in the developing mammalian spinal cord.

哺乳动物发育过程中脊髓中的分布式神经网络会产生间歇性节律

阅读:5
作者:Milla-Cruz Jonathan J, Lognon Adam P, Tran Michelle A, Di Vito Stephanie A, Löer Carlotta, Shonak Anchita, Broadhead Matthew J, Miles Gareth B, Sharples Simon A, Whelan Patrick J
Spinal circuits generate locomotor rhythms, but the mechanisms behind episodic locomotor behaviors remain unclear. This study investigated dopamine-induced episodic rhythms in isolated neonatal mouse spinal cords to understand these mechanisms. The episodic rhythms were generally synchronous and propagated rostro-caudally, although occasional asynchrony was observed. Electrical stimulation of the L5 dorsal root entrained the episodic rhythms, suggesting afferent control and a distributed network. Even after transection or ventrolateral funiculus (VLF) lesions, episodic activity persisted in isolated thoracic or sacral segments, implying VLF-coupled networks. Rhythmicity was observed in VLF and dorsal root axons and was independent of cholinergic excitation via motoneurons, GABA(A) receptors, or dorsal inhibitory circuits. These findings suggest a flexibly coupled, distributed spinal interneuron network underlies episodic rhythmicity, providing a foundation for future investigations into how spinal circuits are modulated to produce diverse motor outputs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。