Age-dependent effects of social isolation on mesolimbic dopamine release.

社会隔离对中脑边缘多巴胺释放的年龄依赖性影响

阅读:9
作者:McWain Megan A, Pace Rachel L, Nalan Patricia A, Lester Deranda B
In humans, social isolation is a known risk factor for disorders such as substance use disorder and depression. In rodents, social isolation is a commonly used environmental manipulation that increases the occurrence of behaviors related to these disorders. Age is thought to influence the effects of social isolation, but this predictive relationship is not well-understood. The present study aimed to determine the effects of social isolation on mesolimbic dopamine release at different developmental age points in mice. The experimental ages and their corresponding comparison to human age stages are as follows: 1 month = adolescence, 4 months = mature adulthood, 12 months = middle adulthood, and 18 months = older adult. Mice were socially isolated for 6 weeks during these developmental stages, then in vivo fixed potential amperometry with recording electrodes in the nucleus accumbens was used to measure stimulation-evoked dopamine release, the synaptic half-life of dopamine, dopamine autoreceptor functioning, and the dopaminergic response to cocaine. Isolation altered dopamine functioning in an age-dependent manner. Specifically, isolation increased dopamine release in the adult ages, but not adolescence, potentially due to increased inhibitory effects of dopamine autoreceptors following adolescent social isolation. Regarding the cocaine challenge, isolation increased dopaminergic responses to cocaine in adolescent mice, but not the adult mice. These findings have implications for clinical and experimental settings. Elucidating the relationship between age, social isolation, and neurochemical changes associated with substance use disorder and depression may lead to improvements in preventing and treating these disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。