Inhibition of protein kinase R activation and upregulation of GADD34 expression play a synergistic role in facilitating coronavirus replication by maintaining de novo protein synthesis in virus-infected cells

抑制蛋白激酶 R 活化和上调 GADD34 表达可发挥协同作用,通过维持病毒感染细胞中的从头蛋白质合成来促进冠状病毒复制

阅读:6
作者:Xiaoxing Wang, Ying Liao, Pei Ling Yap, Kim J Png, James P Tam, Ding Xiang Liu

Abstract

A diversity of strategies is evolved by RNA viruses to manipulate the host translation machinery in order to create an optimal environment for viral replication and progeny production. One of the common viral targets is the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha). In this report, we show that phosphorylation of eIF-2alpha was severely suppressed in human and animal cells infected with the coronavirus infectious bronchitis virus (IBV). To understand whether this suppression is through inhibition of protein kinase R (PKR), the double-stranded-RNA-dependent kinase that is one of the main kinases responsible for phosphorylation of eIF-2alpha, cells infected with IBV were analyzed by Western blotting. The results showed that the level of phosphorylated PKR was greatly reduced in IBV-infected cells. Overexpression of IBV structural and nonstructural proteins (nsp) demonstrated that nsp2 is a weak PKR antagonist. Furthermore, GADD34, a component of the protein phosphatase 1 (PP1) complex, which dephosphorylates eIF-2alpha, was significantly induced in IBV-infected cells. Inhibition of the PP1 activity by okadaic acid and overexpression of GADD34, eIF-2alpha, and PKR, as well as their mutant constructs in virus-infected cells, showed that these viral regulatory strategies played a synergistic role in facilitating coronavirus replication. Taken together, these results confirm that IBV has developed a combination of two mechanisms, i.e., blocking PKR activation and inducing GADD34 expression, to maintain de novo protein synthesis in IBV-infected cells and, meanwhile, to enhance viral replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。