In recent years, Seneca Valley virus (SVV) as a newly identified pathogen of porcine vesicular disease spread quickly and has posed a potential threat to the swine industry in several countries resulting in economic losses. Considering the evolution of SVV, attention should be given to controlling SVV epidemics. So far there are no commercial vaccines or drugs available to combat SVV. Therefore, development of strategies for preventing and controlling SVV infection should be taken into account. In the current study, we evaluated whether the CRISPR-Cas13d system could be used as a powerful tool against SVV infection. Besides, selected crRNAs showed different capacity against SVV infection. Our study suggests the CRISPR-Cas13d system significantly inhibited SVV replication and exhibited potent anti-SVV activity. This knowledge may provide a novel alternative strategy to control epidemics of SVV in the future.
CRISPR-Cas13d Exhibits Robust Antiviral Activity Against Seneca Valley Virus.
CRISPR-Cas13d 对塞内卡谷病毒表现出强大的抗病毒活性
阅读:3
作者:Zhang Yu-Yuan, Sun Ming-Xia, Lian Yuexiao, Wang Tong-Yun, Jia Mei-Yu, Leng Chaoliang, Chen Meng, Bai Yuan-Zhe, Meng Fandan, Cai Xue-Hui, Tang Yan-Dong
| 期刊: | Frontiers in Microbiology | 影响因子: | 4.500 |
| 时间: | 2022 | 起止号: | 2022 Feb 14; 13:835040 |
| doi: | 10.3389/fmicb.2022.835040 | 种属: | Viral |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
