Overexpression of PYGO1 promotes early cardiac lineage development in human umbilical cord mesenchymal stromal/stem cells by activating the Wnt/β-catenin pathway

PYGO1 过度表达通过激活 Wnt/β-catenin 通路促进人脐带间充质基质/干细胞早期心脏谱系发育

阅读:7
作者:Jie Shen, Xiushan Wu, Ping Zhu, Jian Zhuang, Bin Qin, Fang Sun, Wuzhou Yuan, Xiongwei Fan, Zhigang Jiang, Fang Li, Yongqing Li, Yuequn Wang, Mingyi Zhao

Abstract

Cardiovascular disease still has the highest mortality. Gene-modified mesenchymal stromal/stem cells could be a promising therapy. Pygo plays an important role in embryonic development and regulates life activities with a variety of regulatory mechanisms. Therefore, this study aimed to investigate whether the overexpression of the PYGO1 gene can promote the differentiation of human umbilical cord-derived mesenchymal stromal/stem cells (HUC-MSCs) into early cardiac lineage cells and to preliminary explore the relevant mechanisms. In this study, HUC-MSCs were isolated by the explant method and were identified by flow cytometry and differentiation assay, followed by transfected with lentivirus carrying the PYGO1 plasmid. In PYGO1 group (cells were incubated with lentiviral-PYGO1), the mRNA expressions of cardiac differentiation-specific markers (MESP1, NKX2.5, GATA4, MEF2C, ISL1, TBX5, TNNT2, ACTC1, and MYH6 genes) and the protein expressions of NKX2.5 and cTnT were significantly up-regulated compared with the NC group (cells were incubated with lentiviral-empty vector). In addition, the proportion of NKX2.5, GATA4, and cTnT immunofluorescence-positive cells increased with the inducement time. Overexpression of PYGO1 statistically significantly increased the relative luciferase expression level of Topflash plasmid, the protein expression level of β-catenin and the mRNA expression level of CYCLIND1. Compared with the control group, decreased protein levels of NKX2.5 and cTnT were detected in PYGO1 group after application of XAV-939, the specific inhibitor of the canonical Wnt/β-catenin pathway. Our study suggests that overexpression of PYGO1 significantly promotes the differentiation of HUC-MSCs into early cardiac lineage cells, which is regulated by the canonical Wnt/β-catenin signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。