Philosophers frequently define knowledge as justified, true belief. We built a mathematical framework that makes it possible to define learning (increasing number of true beliefs) and knowledge of an agent in precise ways, by phrasing belief in terms of epistemic probabilities, defined from Bayes' rule. The degree of true belief is quantified by means of active information I+: a comparison between the degree of belief of the agent and a completely ignorant person. Learning has occurred when either the agent's strength of belief in a true proposition has increased in comparison with the ignorant person (I+>0), or the strength of belief in a false proposition has decreased (I+<0). Knowledge additionally requires that learning occurs for the right reason, and in this context we introduce a framework of parallel worlds that correspond to parameters of a statistical model. This makes it possible to interpret learning as a hypothesis test for such a model, whereas knowledge acquisition additionally requires estimation of a true world parameter. Our framework of learning and knowledge acquisition is a hybrid between frequentism and Bayesianism. It can be generalized to a sequential setting, where information and data are updated over time. The theory is illustrated using examples of coin tossing, historical and future events, replication of studies, and causal inference. It can also be used to pinpoint shortcomings of machine learning, where typically learning rather than knowledge acquisition is in focus.
A Formal Framework for Knowledge Acquisition: Going beyond Machine Learning.
知识获取的正式框架:超越机器学习
阅读:5
作者:Hössjer Ola, DÃaz-Pachón Daniel Andrés, Rao J Sunil
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2022 | 起止号: | 2022 Oct 14; 24(10):1469 |
| doi: | 10.3390/e24101469 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
