Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells.

分离和鉴定布鲁氏菌mini-Tn5Km2插入突变体,该突变体在HeLa细胞中缺乏内化和细胞内生长能力

阅读:5
作者:Kim Suk, Watarai Masahisa, Kondo Yuki, Erdenebaatar Janchivdorj, Makino Sou-ichi, Shirahata Toshikazu
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and nonprofessional phagocytes and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. To identify genes related to internalization and multiplication in host cells, Brucella abortus was mutagenized by mini-Tn5Km2 transposon that carryied the kanamycin resistance gene, 4,400 mutants were screened, and HeLa cells were infected with each mutant. Twenty-three intracellular-growth-defective mutants were screened and were characterized for internalization and intracellular growth. From these results, we divided the mutants into the following three groups: class I, no internalization and intracellular growth within HeLa cells; class II, an internalization similar to that of the wild type but with no intracellular growth; and class III, internalization twice as high as the wild type but with no intracellular growth. Sequence analysis of DNA flanking the site of transposon showed various insertion sites of bacterial genes that are virulence-associated genes, including virB genes, an ion transporter system, and biosynthesis- and metabolism-associated genes. These internalization and intracellular-growth-defective mutants in HeLa cells also showed defective intracellular growth in macrophages. These results suggest that the virulence-associated genes isolated here contributed to the intracellular growth of both nonprofessional and professional phagocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。