Exploring novel pyrethroid resistance mechanisms through RNA-seq in Triatoma dimidiata from Colombia.

通过 RNA-seq 探索哥伦比亚锥蝽(Triatoma dimidiata)的新型拟除虫菊酯抗性机制

阅读:8
作者:Zuluaga Sara, Fernandez Geysson Javier, Mejía-Jaramillo Ana María, Lowenberger Carl, Triana-Chavez Omar
Pyrethroids are the most widely used insecticides for controlling insect vectors carrying medically and economically significant pathogens. In Colombia, studies on triatomine insecticide resistance are limited. Due to the increasing challenge of insecticide resistance, this work focuses on determining resistance to different pyrethroid insecticides in populations of Triatoma dimidiata from Colombia. To define the possible causes of resistance, three potential molecular mechanisms were explored: 1) mutations in the coding region of the voltage-gated sodium channel gene (vgsc), the insecticide target site; 2) modulation of enzymatic activity associated with metabolic resistance; and 3) changes in the mRNA profiles using RNA-seq. The results showed that the field population of T. dimidiata was resistant to lambda-cyhalothrin and deltamethrin insecticides. Insects surviving sublethal doses of insecticides did not exhibit the classical mutations in the vgsc gene. Transcriptomic profile analyses of T. dimidiata revealed differentially regulated genes in field and laboratory populations under selective pressure with lambda-cyhalothrin. Gene enrichment analysis showed the positive regulation of transcripts related to detoxifying enzymes and mitochondrial proteins, which could play a significant role in insecticide resistance. This comprehensive investigation is crucial for providing insights into resistance mechanisms and generating strategies to manage these critical vector species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。