Exploring novel pyrethroid resistance mechanisms through RNA-seq in Triatoma dimidiata from Colombia.

通过 RNA-seq 探索哥伦比亚锥蝽(Triatoma dimidiata)的新型拟除虫菊酯抗性机制

阅读:4
作者:Zuluaga Sara, Fernandez Geysson Javier, Mejía-Jaramillo Ana María, Lowenberger Carl, Triana-Chavez Omar
Pyrethroids are the most widely used insecticides for controlling insect vectors carrying medically and economically significant pathogens. In Colombia, studies on triatomine insecticide resistance are limited. Due to the increasing challenge of insecticide resistance, this work focuses on determining resistance to different pyrethroid insecticides in populations of Triatoma dimidiata from Colombia. To define the possible causes of resistance, three potential molecular mechanisms were explored: 1) mutations in the coding region of the voltage-gated sodium channel gene (vgsc), the insecticide target site; 2) modulation of enzymatic activity associated with metabolic resistance; and 3) changes in the mRNA profiles using RNA-seq. The results showed that the field population of T. dimidiata was resistant to lambda-cyhalothrin and deltamethrin insecticides. Insects surviving sublethal doses of insecticides did not exhibit the classical mutations in the vgsc gene. Transcriptomic profile analyses of T. dimidiata revealed differentially regulated genes in field and laboratory populations under selective pressure with lambda-cyhalothrin. Gene enrichment analysis showed the positive regulation of transcripts related to detoxifying enzymes and mitochondrial proteins, which could play a significant role in insecticide resistance. This comprehensive investigation is crucial for providing insights into resistance mechanisms and generating strategies to manage these critical vector species.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。