BACKGROUND: Single-cell sequencing enables us to better understand genetic diseases, such as cancer or autoimmune disorders, which are often affected by changes in rare cells. Currently, no existing software is aimed at identifying single nucleotide variations or micro (1-50âbp) insertions and deletions in single-cell RNA sequencing (scRNA-seq) data. Generating high-quality variant data is vital to the study of the aforementioned diseases, among others. RESULTS: In this study, we report the design and implementation of Red Panda, a novel method to accurately identify variants in scRNA-seq data. Variants were called on scRNA-seq data from human articular chondrocytes, mouse embryonic fibroblasts (MEFs), and simulated data stemming from the MEF alignments. Red Panda had the highest Positive Predictive Value at 45.0%, while other tools-FreeBayes, GATK HaplotypeCaller, GATK UnifiedGenotyper, Monovar, and Platypus-ranged from 5.8-41.53%. From the simulated data, Red Panda had the highest sensitivity at 72.44%. CONCLUSIONS: We show that our method provides a novel and improved mechanism to identify variants in scRNA-seq as compared to currently existing software. However, methods for identification of genomic variants using scRNA-seq data can be still improved.
Red panda: a novel method for detecting variants in single-cell RNA sequencing.
红熊猫:一种检测单细胞 RNA 测序中变异的新方法
阅读:5
作者:Cornish Adam, Roychoudhury Shrabasti, Sarma Krishna, Pramanik Suravi, Bhakat Kishor, Dudley Andrew, Mishra Nitish K, Guda Chittibabu
| 期刊: | BMC Genomics | 影响因子: | 3.700 |
| 时间: | 2020 | 起止号: | 2020 Dec 29; 21(Suppl 11):830 |
| doi: | 10.1186/s12864-020-07224-3 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
