Rapid, cost-effective biomanufacturing of products like therapeutics, materials, and lab-grown foods depends on optimizing cell culture media, a complex and expensive task due to the combination of components and processing variables. This is especially important for therapeutic production using mammalian systems like Chinese Hamster Ovary (CHO) cells, where long development timelines contribute to high drug costs. Using Bayesian optimization (BO), adapted for bioprocess applications, our method supports multiple parallel experiments and incorporates thermodynamics-based constraints on media solubility to ensure feasible medium formulations. The approach is validated both in-silico and in experimental bioreactor settings, showing improved product titers compared to classical design of experiments (DOE) methods. This work bridges machine learning and physical modeling to create a more data-efficient process optimization strategy. The integration of this method into biomanufacturing pipelines together with robotics-assisted bioreactors paves the way for automated bioprocess optimization and more rapidly available and affordable biotherapeutics.
Integration of Bayesian optimization and solution thermodynamics to optimize media design for mammalian biomanufacturing.
将贝叶斯优化和溶液热力学相结合,以优化哺乳动物生物制造的培养基设计
阅读:3
作者:Ndahiro Nelson, Ma Edward, Bertalan Tom, Donohue Marc, Kevrekidis Yannis, Betenbaugh Michael
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Jul 3; 28(8):112944 |
| doi: | 10.1016/j.isci.2025.112944 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
