Carbohydrate structural isomers analyzed by sequential mass spectrometry.

利用顺序质谱法分析碳水化合物结构异构体

阅读:6
作者:Ashline David J, Lapadula Anthony J, Liu Yan-Hui, Lin Mei, Grace Mike, Pramanik Birendra, Reinhold Vernon N
Consistent with the goals of a comprehensive carbohydrate sequencing strategy, we extend earlier reports to include the characterization of structural (constitutional) isomers. Protocols were developed around ion trap instrumentation providing sequential mass spectrometry (MSn) and supported with automation and related computational tools. These strategies have been built on the principle that for a single structure all product spectra upon sequential fragmentation are reproducible and each stage represents a rational spectrum of its precursor; i.e., all major fragments should be accounted for. Anomalous ions at any stage are clues indicating the presence of structural isomers. Gas-phase isolation and subsequent fragmentation of such ions provide an opportunity to specifically resolve selected structures for their detailed characterization. Importantly, some isomers were not detected following MS2 and required multiple (MSn>2) stages for their characterization. Derivatization remains critical to position substructures in a glycan array since product ions carry fragmentation "scars" throughout the MSn tree. Equally as important are the pathway relationships between each stage and the greater yield of fragments with the smaller number of oscillators. Applications were directed to the structural isomers in ovalbumin and IgG, where, in the latter case, several previously unreported glycans were detected. Procedures were supported with bioinformatics tools for assimilating structure from the MSn data sets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。