In Vivo Multicellular Feedback Control in Synthetic Microbial Consortia.

合成微生物群落中的体内多细胞反馈控制

阅读:8
作者:Salzano Davide, Shannon Barbara, Grierson Claire, Marucci Lucia, Savery Nigel J, di Bernardo Mario
In this paper, we present a biomolecular control architecture able to guarantee stable and precise regulation of gene expression. Specifically, we engineer a microbial consortium comprising a cellular population, named controllers, that is tasked to regulate the expression of a gene in a second population, termed targets. Traditional biomolecular control strategies, while effective, are predominantly confined to single-cell applications, limiting their complexity and adaptability due to factors such as competition for limited cell resources and incompatible chemical reactions. Our approach overcomes these limitations by employing a distributed multicellular feedback loop between two strains of Escherichia coli, allowing for division of labor across the consortium. In vivo experiments demonstrate that this control system maintains precise and robust gene expression in the target population, even amid variations in consortium composition. Our study fills a critical gap in synthetic biology and paves the way for more complex and reliable applications in the field.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。